Hecke algebra correspondences for the metaplectic group
نویسندگان
چکیده
منابع مشابه
On the irreducibility of the complex specialization of the representation of the Hecke algebra of the complex reflection group $G_7$
We consider a 2-dimensional representation of the Hecke algebra $H(G_7, u)$, where $G_7$ is the complex reflection group and $u$ is the set of indeterminates $u = (x_1,x_2,y_1,y_2,y_3,z_1,z_2,z_3)$. After specializing the indetrminates to non zero complex numbers, we then determine a necessary and sufficient condition that guarantees the irreducibility of the complex specialization of the repre...
متن کاملMonomial Bases for the Centres of the Group Algebra and Iwahori–hecke Algebra
G. E. Murphy showed in 1983 that the centre of every symmetric group algebra has an integral basis consisting of a specific set of monomial symmetric polynomials in the Jucys–Murphy elements. While we have shown in earlier work that the centre of the group algebra of S3 has exactly three additional such bases, we show in this paper that the centre of the group algebra of S4 has infinitely many ...
متن کاملInner products on the Hecke algebra of the braid group
We point out that the Homfly polynomial (that is to say, Ocneanu’s trace functional) contains two polynomial-valued inner products on the Hecke algebra representation of Artin’s braid group. These bear a close connection to the Morton–Franks–Williams inequality. In these structures, the sets of positive, respectively negative permutation braids become orthonormal bases. In the second case, many...
متن کاملA Correspondence for the Generalized Hecke Algebra of the Metaplectic Cover of SL(2,F), F p-adic
We prove using a technique developed for GL n in Howe and Moy H a bijection between generalized Hecke algebras of G SL F over a p adic eld and those of its n fold metaplectic cover G This result implies that there is a canonical correspondence between irreducible admissible representations of G and genuine irreducible admissible representations of G of su ciently large level depending on n p
متن کاملHecke Correspondences and Feynman Graphs
We consider natural representations of the Connes-Kreimer Lie algebras on rooted trees/Feynman graphs arising from Hecke correspondences in the categories LRF ,LFG constructed by K. Kremnizer and the author. We thus obtain the insertion/elimination representations constructed by Connes-Kreimer as well as an isomorphic pair we term top-insertion/top-elimination. We also construct graded finite-d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2017
ISSN: 0002-9947,1088-6850
DOI: 10.1090/tran/7020